
Healing fats of the skin: the structural and immunologic
roles of the ω-6 and ω-3 fatty acids
Meagen M. McCusker, MD, Jane M. Grant-Kels, MD⁎

Department of Dermatology University of Connecticut Health Center, 263 Farmington Avenue, MC 6230, Farmington,
CT 06030, USA

Abstract Linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3) represent the parent fats of the two main
classes of polyunsaturated fatty acids: the ω-6 (n-6) and the ω-3 (n-3) fatty acids, respectively. Linoleic
acid and α-linolenic acid both give rise to other long-chain fatty acid derivatives, including γ-linolenic
acid and arachidonic acid (ω-6 fatty acids) and docosahexaenoic acid and eicosapentaenoic acid (ω-3
fatty acids). These fatty acids are showing promise as safe adjunctive treatments for many skin
disorders, including atopic dermatitis, psoriasis, acne vulgaris, systemic lupus erythematosus,
nonmelanoma skin cancer, and melanoma. Their roles are diverse and include maintenance of the
stratum corneum permeability barrier, maturation and differentiation of the stratum corneum, formation
and secretion of lamellar bodies, inhibition of proinflammatory eicosanoids, elevation of the sunburn
threshold, inhibition of proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and
interleukin-12), inhibition of lipoxygenase, promotion of wound healing, and promotion of apoptosis
in malignant cells, including melanoma. They fulfill these functions independently and through the
modulation of peroxisome proliferator-activated receptors and Toll-like receptors.
© 2010 Elsevier Inc. All rights reserved.

Introduction

Interest in the use of dietary fats to treat skin disease is
marked by the historic study of Burr and Burr in 1929,1,2

where rats fed a diet devoid of all fat experienced growth
retardation, reproductive failure, and a scaling erythematous
skin eruption with increased transepidermal water loss.
Clinical manifestations diminished when the diet was
supplemented with linoleic and α-linolenic acids. Similarly,
one of the investigators from these early experiments found
he could rid his hand dermatitis by consuming these
polyunsaturated fatty acids (PUFAs). Originally referred to
as vitamin F, these fats soon came to be known as the

essential fatty acids (EFAs), because humans lack the
enzymes necessary for their synthesis.

These original works, as well as other early studies, have
been criticized because a distinction was not drawn between
supplementation withω-6 (linoleic acid) orω-3 (α-linolenic)
fatty acids.3 Differentiating between the two is important,
because their roles, as we have now come to understand more
clearly, are distinct—linoleic acid and its products serve as
structural precursors for the important stratum corneum
ceramides, and α-linolenic derivatives serve as immune
modulators. We have just begun to recognize the sophisti-
cated contribution of the PUFAs in skin disease through
these and other structural and immunologic roles.

As we shall discuss, linoleic acid (LA) and its derivatives
play a central role in the structure and function of the stratum
corneum permeability barrier, defects of which are most
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notable in atopic dermatitis. Derivatives of α-linolenic acid
(ALA) can modulate the immune response of the epidermis
by influencing T lymphocytes, acting on Toll-like receptors
(TLRs), and activating caspase cascades that influence many
inflammatory dermatoses, including acne vulgaris, psoriasis,
atopic dermatitis, systemic lupus erythematosus, and skin
cancer. Finally, the ω-3s are ligands for an important class of
transcription factors, the peroxisome proliferator-activated
receptors (PPARs), which are important in lipid metabolism,
sugar homeostasis, and insulin sensitization as well as
inflammation, immune regulation, and skin barrier homeo-
stasis. They also show promise as natural options for treating
inflammatory skin disease and skin carcinogenesis, includ-
ing melanoma.

PUFA terminology, metabolism and
dietary homeostasis

LA (18:2ω6) and ALA (18:3ω3) represent the parent fats
of the two main classes of PUFAs: the ω-6 (n-6) and the ω-3
(n-3) fatty acids, respectively. LA and ALA both give rise to
other long-chain fatty acid derivatives and a host of other
lipid mediators, including prostaglandins, leukotrienes, and
lipoxins by way of a shared set of enzymes (Figure 1).

LA is found in the oils of safflower, grape seed, poppy
seed, sunflower, hemp, corn, wheat germ, cottonseed, and
soybean. Many of these oils are commonly found in baked
goods and infant formula. ALA is a component of green
leafy vegetables, flax seed, walnuts, soybean, and canola
oils. Their derivatives, eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), are obtained through breast
milk and the oils of cold-water fish such as salmon,
mackerel, sardines, herring, and rainbow trout.4 The ideal
homeostatic cellular concentration of ω-6:ω-3 is 3:1.5,6

Many barriers exist to achieving this level, including:

• Western diets. The intake of ω-6 fats is approximately
10 times greater than ω-3 fats. Furthermore, as a result
of food processing and cooking, many ω-3 fats are lost
or oxidized.7

• Enzyme competition. Both classes depend upon the
same enzymes for the production of their long-
chain derivatives. Given the abundance of ω-6s in
the diet, EPA and DHA are minimally produced;
therefore, a balanced ratio of these fats is dependent on
nutritional intake.

In addition, production of long-chain derivatives is
minimal due to the following:

• Inefficiency of Δ5 and Δ6 desaturase enzymes. The
production of long-chain derivatives of LA and ALA is
dependent on these enzymes, but the process is quite
inefficient, where only 5% to 10% of ALA is converted
to EPA and 1% toDHA.8 Infants are even less capable of

converting these fats due to immature enzyme activity
and are dependent on dietary supply through breast milk.

• Western diet and disease. Saturated fats, trans-fats,
fat-free diets, glucose-rich diets, alcohol, glucocorti-
coids, reduced insulin levels, protein deficiency,
hypothyroidism and age also reduce the activity of
the desaturase enzymes.

What can be concluded is that extradietary supplemen-
tation of ω-3s is necessary to achieve a balanced ratio of ω-
3:ω-6 fatty acids, especially in the cases of formula feeding,
reduced cold-water fish intake, abundant alcohol consump-
tion, diabetic states, protein deficiency, and aging.

Laboratory evaluation of EFA profiles can be obtained.
Tissues preferentially metabolize PUFAs in this order: ω-3 N
ω-6 Nω-9. An elevated mead acid (20:3ω-9) level suggests a
reduced blood level of ω-3 and ω-6 fatty acids, or essential
fatty acid deficiency.3 When LA and ALA are not supplied
by the diet, oleic acid (18:1ω-9) serves as the substrate for
PUFA generation, creating mead acid. As we will come to
appreciate, ALA and LA are not easily replaced; conversely,
they are vital to healthy skin.

LA and the stratum corneum
permeability barrier

LA is the most abundant fatty acid in the epidermis.
Importantly, it is also the precursor to ceramides, a major
component of the extracellular lipid matrix that forms the
stratum corneum permeability barrier (SCPB). There are
essentially three components of the SCPB: the extracellular
lipid matrix, the cornified envelop, and dense keratin fibrils
aggregated by filaggrin. The extracellular lipid matrix is
composed of 50% ceramides, 25% cholesterol, and 15% free
fatty acids.9 Lipids, enzymes, and antimicrobial peptides (β-
defensin 2) are packaged into lamellar bodies in the upper
stratum spinosum and stratum granulosum.10 Extrusion of
lamellar bodies into the extracellular space signals the cross-
linking of the cornified envelop proteins loricrin, involucrin,
and trichohyalin by trans-glutaminase. The extracellular
lipid matrix coats the cornified envelop proteins, forming a
strong, water-impervious lamella.

Defective SCPB results when mutations occur in the
proteins and enzymes that are important in this complex
process11,12 orwhen lipid levels are reduced.Monounsaturated
and saturated fatty acids can be synthesized within the
epidermis. PUFAs must be obtained from the diet. Labeling
experiments have shown that dietary fatty acids and cholesterol
are delivered to the stratum corneum.13-16 Fatty acid transport
proteins present in keratinocytes are more selective for PUFAs
than monounsaturated fatty acids. When dietary PUFA is
deficient, oleic acid takes its place, resulting in abnormal
stratum corneum permeability and appearance.17-20 Insuffi-
cient LA also yields less ω-hydroxyceramide, an important
anchoring lipid connecting the extracellular lipid matrix to the
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cornified envelop. Therefore, PUFA insufficiency results in
increased transepidermal water loss.21 Proliferative keratins
(K6 and K16) and inflammation-associated keratins (K17) are
also induced as a result of PUFA deficiency.22 These findings
highlight the necessity of dietary fatty acids, especially ω-6
fats, in epidermal homeostasis and the SCPB.23

SCPB and healthy skin

An acid environment is critical for the functioning of acid
sphingomyelinase and β-glucocerebrosidase involved in the
production of ceramides. This is facilitated by the catabolism
of filaggrin, which yields the polycarboxylic acids pyrroli-
dine carboxylic acid and trans-urocanic acid 24 that help
maintain an acidic pH. They are also components of natural
moisturizing factor that helps hydrate the stratum corneum.
We have just reviewed the importance of dietary PUFA in
maintaining the integrity of the SCPB.

Topically applied biologic lipids can also be effective in
restoring the SCPB. More specifically, youthful skin is more
dependent on a lipid-dominant mixture; whereas, a choles-
terol-dominant mixture is required by aged skin.25 Use of
statins in elderly patients may exacerbate xerosis, because
topical lovastatin resulted in barrier irregularities and
hyperproliferation of the epidermis.26 Other nutritional
agents that stimulate ceramide synthesis and promote a
healthy permeability barrier are listed in Table 1.26-32

SCPB and atopic dermatitis

Defects in the epidermal barrier are at the forefront of
atopic dermatitis (AD). Defects in filaggrin have been
established in patients with AD.33 Filaggrin is essential for
the aggregation of keratin filaments in the outer stratum
corneum and for providing the acid derivatives necessary to
activate the production of ceramides. Not all patients with

Fig. 1 Fatty acid derivatives and lipid mediators from linoleic acid and α-linolenic acid.
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AD have genetic defects in filaggrin. With the complexity
and orchestration of precursors and enzymes necessary to
complete an effective permeability barrier, other errors are
likely to surface. In addition, although an incompetent barrier
in AD predisposes patients to continual antigen invasion and
inflammation, patients with inherited filaggrin defects in
ichthyosis vulgaris do not maintain the same degree of
inflammation,34 arguing for defects in immunity in AD as
well. Interleukin (IL)-4 and IL-13, known pathogenic
cytokines in AD, have been shown to reduce filaggrin gene
expression in cultured keratinocytes.35

PUFAs, early nutrition, and risk of AD

Despite an incomplete pathogenic puzzle, lipid and other
nutritional treatments may help facilitate maturation of the
permeability barrier and reduce the risk of AD. Nutritional
modulation likely begins during gestation, as the risk for AD
is encountered as early as in the in utero period. Low levels
of arachidonic acid in cord blood have been associated with
the risk of dermatitis.36-38 Arachidonic acid is the precursor
to series-4 leukotrienes and lipoxins in addition to series-2
prostaglandins (Figure 1). Prostaglandin E2 (PGE2), an
arachidonic acid derivative, appears to be involved in the
generation of regulatory T cells, which are important in
reducing inflammatory responses.39 Trans-fatty acids, de-
rived from the hydrogenation of vegetable oils found in
margarine, shortening, and baked goods, inhibit the Δ-5 and
Δ-6 desaturase enzymes that are necessary for the conver-
sion of LA and ALA to long-chain products. Concentrations
of PUFAs, both cis- and trans- isomers, in cord blood
correlate with maternal serum concentrations. An inverse
relationship was found between infant trans-fatty acids and
arachidonic acid and DHA concentrations in serum.40

Arachidonic acid levels positively correlated with gestational

length. Reducing the intake of trans-fatty acids during
pregnancy may help reduce the risk of AD by increasing the
concentration of arachidonic acid in infant serum. In
addition, an increased gestational period likely gives the
epidermis more time to mature, decreasing the chances of
microbial invasion.

Supplementation with ω-6 in AD

Historically, results of studies of ω-6 supplementation in
AD have been conflicting and confusing. The premise
behind the use of evening primrose oil, as source of γ-
linolenic acid (GLA) in AD comes from studies that showed
reduced levels of GLA and dihomo-GLA (DGLA) and
higher levels of LA in affected patients, suggesting that a
defect in the Δ-6 desaturase enzyme was at work. Many
reviews showed a benefit,41 but some were not as
promising.42 The most recent meta-analysis on this issue
deduced that evening primrose oil is effective in a subset of
patients with atopic dermatitis and elevated immunoglobulin
(Ig) E levels.43

AD, biologic lipids, and other nutrients

Many current treatments for AD are effective at reducing
inflammation and improving the texture of the skin, but they
may also be hampering maturation of the skin barrier,
creating a cycle of disease. For instance, bleach baths,
although helpful in reducing the burden of Staphylococcus
aureus on the skin surface, are likely preventing both acid
sphingomyelinase and β-glucocerebrosidase that require an
acid pH from producing ceramides. Colonization with
ceramidase-producing Pseudomonas aeruginosa can also
reduce ceramide levels in some patients.44,45

The enzymes involved in lipid uptake and synthesis are
up-regulated during acute barrier disruption and cholesterol
synthesis is increased.46,47 Acetyl coenzyme A carboxylase
and fatty acid synthase, needed for de novo fatty acid
synthesis, are enhanced.48,49 Fatty acid transport proteins are
increased.50 Production of epidermal fatty acid-binding
protein is also increased.51-54 If ample lipid can be supplied
to the epidermis, exogenous acids or enzyme sources may
help convert these fats into ceramides. The topical
application of a cream containing the lactic acid bacterium
Streptococcus thermophilus increased concentrations of
ceramides after a 2-week application, with improvement in
erythema, scaling, and itch.55

Healing of the SCPB after acute barrier disruption is also
dependent on a graded calcium concentration from the
stratum granulosum to the stratum corneum. Occlusive
petrolatum, although seemingly controlling transepidermal
water loss, impedes the calcium concentration gradient and
prevents the extrusion of lamellar bodies that are important in
barrier maturation and repair. Fewer lamellar bodies means
less antimicrobial peptide necessary to combat pathogenic

Table 1 Nutritional agents that stimulate ceramide synthesis

Nutrient Effect

Niacinamide Promotes glucosylceramide,
sphingomyelin, fatty acid, and cholesterol
synthesis from in vitro keratinocytes27;
topical application improved stinging score
in patients with sensitive skin28; PPAR
ligand; up-regulates keratinocyte
expression of involucrin and filaggrin29

α-Lipoic acid/
N-acetylcysteine

Strong antioxidants that stimulate ceramide
generation in vitro30

Ascorbic acid Stimulates PKC and increases the synthesis
of ceramide subspecies31

L-Lactic acid An α-hydroxy acid capable of stimulating
lipid synthesis and promoting corneocyte
desquamation; may serve as a lipid
precursor, donating acetate or providing
NADH32

NADH, Nicotinamide adenine dinucleotide dehydrogenase; PKC,
protein kinase C; PPAR, peroxisome proliferator-activated receptor.
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organisms like S aureus. Topical steroid application inhibits
TLR-3, a signaling molecule important in combating
viruses. Genetic defects in the SCPB in AD will make its
maturation incomplete.

Applying more physiologic lipids would likely lead to
greater healing as lipid mixtures are incorporated into
nascent lamellar bodies.56 Understandably, a mixture of
ceramide, cholesterol, and free fatty acids was therefore very
effective in the treatment of severe atopic lesions.57 Whether
or not these topical preparations are available, increasing the
dietary consumption of beneficial fatty acids like LA and
GLA in conjunction with nutritional modalities mentioned in
Table 1, while maintaining an acidic environment of the
stratum corneum, would likely be of benefit. A 2006 analysis
found oral ceramide supplementation improved skin symp-
toms and allergic responses in atopic children when given at
1.8 g/day for 2 weeks.58 Wheat germ also contains ceramide
precursors, yet the allergic nature of this substrate may limit
its utility in some patients.

Immune-modulating roles of ω-3 fatty acids in
the epidermis and skin disease

DHA and EPA are not major constituents of the epidermis,
which is likely a reflection of insufficient dietary consump-
tion or increased cellular utilization. Unlike LA, which plays
a major structural role in the epidermis and SCPB, ω-3 fatty
acids appear to play an immune-modulating role. EPA has
been shown to reduce the expression of intercellular adhesion
molecule-1,59 reduce T-lymphocyte proliferation, and
dampen delayed-type hypersensitivity.60 Diets supplemen-
ted with fish oil can lead to altered phospholipid profiles in
the epidermis.61,62 A prominent enzyme in the epidermis,
15-lipoxygenase, converts PUFAs into anti-inflammatory
mediators that can reduce the production of leukotriene B4,
a potent inflammatory and antimicrobial mediator derived
from the proinflammatory enzyme 5-lipoxygenase on
arachidonic acid. Elevated leukotriene B4 has been found
in lesions of guttate psoriasis.63 Zileuton, a known inhibitor
of leukotriene B4, has been shown to improve psoriasis64 and
pruritus in Sjögren-Larsson syndrome.

AD and ω-3 fatty acids

Use of ω-3 fats in pregnancy has been scrutinized, and
fish oil supplementation during pregnancy was associated
with improvements in clinical severity in AD at 1 year.65

Early nutrition is highly important for infant development,
especially for development of the immune system. In fact,
thymic density of breastfed infants is nearly twice that of
infants who receive formula.66 Many studies have shown
that breastfeeding has a protective effect on the development
of AD.67,68 This again is likely a reflection of maternal
nutrition, because an increased incidence of AD was found in

infants consuming breast milk rich in saturated fat and
diminished ω-3 fats.69 This argues for the importance of
DHA and EPA in early life. This recognition has led the U.S.
Food and Drug Administration to include the long-chain
fatty acids, DHA and arachidonic acid, in infant formulas.
Breast milk also contains other factors that protect against
AD, including epidermal growth factor, which stimulates
keratinocyte growth and migration.70

Psoriasis and ω-3 fatty acids

Supplementation with fish oil has produced varied results
in psoriasis, depending on the method of administration.
Improvement has not been seen with topical application71 or
oral supplementation.72 Improvement was seen when
administered intravenously in a randomized, double-blind
trial of patients hospitalized with plaque-type psoriasis.73

Patients were given a combination of 4.2 g of EPA and DHA
each vs an ω-6 preparation. Improvements in erythema,
scaling, inflammatory infiltrate, and body surface area were
observed. It appears that higher doses, and likely longer
treatment periods, are necessary for the effects of EPA and
DHA to be evident. The intravenous administration of 4.2 g
likely equates to double or triple the dose orally. Fish oil
supplementation was also shown to reduce the hyperlipid-
emia and nephrotoxicity associated with retinoid and
cyclosporin therapy, respectively.74,75

Skin cancer and ω-3 fatty acids

DHA and EPA have piqued the interest of research
oncologists with their protective effect on colorectal
cancer76 and their ability to enhance the effect of
chemotherapeutic drugs.77 DHA and EPA were shown to
have a proapoptotic effect on colorectal cancer cells by
activation of intrinsic and extrinsic caspase cascades. Many
are considering DHA and EPA to be an important adjuvant
therapy for many malignancies.77

With regard to skin carcinogenesis, ultraviolet radiation is
a known carcinogen. One study found that individuals
supplemented with 4 g of EPA daily had an increased
sunburn threshold, reduced p-53 expression, and fewer
strand breaks in peripheral blood leukocytes.78 Also, in a 20-
year observational study of the Inuit, a population known for
its vast fish consumption, low rates of melanoma and
nonmelanoma skin cancer were reported.79

Systemic lupus erythematosus and ω-3 fatty acids

In systemic lupus erythematosus (SLE), necrosis of cells
prevails over apoptosis, and defects in the latter are assumed
to be partly pathogenic. Resultant self-derived RNA and
DNA immune complexes, derived from necrotic cells, are
believed to be taken up by the FcɛRII on plasmacytoid
dendritic cells and shuttled to endosomal compartments.80,81
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There, these immune complexes activate TLR-7 and TLR-9,
leading to the production of interferon (INF)-γ, which is
implicated in the pathogenesis of SLE.82 Selective blocking
of TLR-7 and TLR-9 reduced the production of IFN-γ and the
further production of autoreactive T cells.83 Whether DHA
and EPA could promote apoptosis of “sunburn cells” is purely
speculative at this point. Increasing the sunburn threshold
with EPA supplementation may at least be beneficial for
patients with SLE. Results of one study showed DHA and
EPA levels were reduced in these patients.84

Introduction to the PPARs

Ligands for the PPARs are emerging as valuable
treatments for many diseases, including skin disease. DHA
and EPA are natural ligands for these receptors. Synthetic
ligands, such as the thiazolidinediones, have been used in
psoriasis with success.85 There are three PPAR isoforms:
PPAR-α, PPAR-β/Δ, and PPAR-γ. They are members of
the nuclear receptor family that partner with the retinoic acid
X receptor to fulfill their functions. Their primary role has
been in cardiovascular medicine and endocrinology as lipid
regulators and insulin sensitizers. Table 2 summarizes their
metabolic functions.86-92

PPAR-γ is particularly notable because it has strong anti-
inflammatory properties, including:

• inhibiting tumor necrosis factor-α (TNF-α) generation
from adipocytes93

• inhibiting macrophage-induced IFN-γ production94,95

• inhibiting the activity of lipoxygenase96 and
• decreasing the secretion of IL-12 from dendritic
cells97,98

The anti-inflammatory properties of PPAR-γ make it an
interesting candidate for the treatment of inflammatory skin
conditions, including psoriasis, AD, acne, and hidradenitis
suppurativa. Furthermore, PPAR expression is altered in
lesional skin of patients with psoriasis and AD.99,100

PPAR expression in the skin

Adult keratinocytes, Langerhans cells, and melanocytes
express all PPAR isotypes.101-103 Mechanisms of epidermal
PPAR actions have been elucidated in experimental models
of skin disease, which are summarized in Table 3.104-108

PPARs and skin disease

Psoriasis
The anti-inflammatory properties of PPARs have

prompted clinical trials to investigate the effectiveness of
these medicines in other inflammatory conditions, namely
psoriasis, which has been included in the chronic inflamma-
tory spectrum of the metabolic syndrome. A recent double-
blind, placebo-controlled trial randomized 41 patients to
receive acitretin plus placebo or acitretin plus pioglitazone.85

After 12 weeks of therapy, a greater reduction in disease was

Table 2 Metabolic functions of peroxisome proliferator-activated receptor (PPAR)

PPAR Function Synthetic ligands Natural ligands

PPAR-α β-oxidation of fatty acids,86 lipoprotein metabolism,87,88 ketogenesis89 Fenofibrate, gemfibrozil DHA and EPA
PPAR-β/Δ Adipocyte differentiation and proliferation, cholesterol homeostasis90,91 DHA and EPA
PPAR-γ Cell growth and differentiation; glucose and lipid homeostasis92 Thiazolidinediones: rosiglitazone,

troglitazone, and pioglitazone
DHA and EPA

EPA, Eicosapentaenoic acid; DHA, docosahexaenoic acid.

Table 3 Mechanisms of action of epidermal peroxisome proliferator-activated receptors (PPARs)

PPAR Action

PPAR-α • Anti-inflammatory: In a mouse model of irritant contact dermatitis, topical PPAR-α agonists abrogated the intensity
of the inflammatory infiltrate and decreased the expression of TNF-α and IL-1, leading to reduced ear swelling104

• Proapoptotic: In a model of epidermal hyperplasia, PPAR-α application led to enhanced epidermal thinning
and apoptosis105

• Inhibits maturation, migration and T-cell stimulatory properties of Langerhans cells through direct and indirect
actions on NF-κB106

PPAR-β • Anti-apoptotic: activation of PPAR-β protects keratinocytes from cell death106

• PPAR-β-deficient mice have a hyperplastic epidermis with both exaggerated hyperproliferation and cell death107

mediated through NF-κB.
PPAR-γ • In normal mouse skin, topical application of PPAR-γ led to no change in epidermal thickness; whereas,

application to hyperproliferative epidermis led to normalization108

• Proapoptotic

IL, Interleukin; NF-κB, nuclear factor κB; TNF-α, tumor necrosis factor-α.
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seen in the treatment group (64.2% vs 51.7%). Although
acitretin is known to bind the retinoic acid receptor-α, binding
possibly occurs through the retinoic acidX receptor. As stated
earlier, PPARs heterodimerize with the retinoic acid X
receptor. Therefore, a synergistic effect may be occurring
between pioglitazone and acitretin that could potentially
reduce the requirement and toxicities of either medication
alone. Although systemic administration has been successful,
topical application of PPAR activators, including rosiglita-
zone, have not been shown to be effective in psoriasis.109-111

Acne
Insulin sensitizers, such as the thiazolidinediones and

metformin, also have the ability to lower serum androgen
levels through the action of PPAR-γ. This makes them
intriguing agents for the treatment of acne and hirsutism;
however, the adverse side effects of hypoglycemia112 and
reports of increased cardiovascular morbidity (pioglitazone)
and liver toxicity (troglitazone) may limit their use in acne
and psoriasis. All three PPAR isotypes also promote
lipogenesis, which could possibly promote acnegenesis.

Atopic dermatitis
The potential application of PPARs in AD is intriguing.

Topical PPAR-α therapy shows some promise.113 PPARs
have been shown to promote maturation of the SCPB
through the following mechanisms:

• stimulating ABCA12 expression, necessary for the
uptake of lipids into lamellar bodies14

• increasing β-glucocerebrosidase activity
• stimulating lamellar body secretion
• enhancing the synthesis of epidermal fatty acids
cholesterol, and sphingomyelin

• increasing markers of terminal differentiation: loricrin,
involucrin, trans-glutaminase 1, and profilaggrin114,115

DHA, EPA and other natural PPAR agonists

DHA, EPA, and other natural PPAR agonists may have a
more favorable safety profile for use in skin disease. Among
the natural PPAR mediators are116:

• cis-9, trans-11 conjugated linoleic acid (cLA)
• prostaglandin-J2
• dietary phytochemicals (PPAR-γ receptor agonists):
- quercetin, luteolin, rosmarinic acid, biochanin A
found in red clover

- zingerone found in ginger

These nutrients, including DHA and EPA, are known as
“reversible agonists” of PPAR-γ, so higher concentrations
are required for receptor activation. Perhaps the improve-
ment in psoriasis observed with intravenous EPA and DHA
stated earlier occurs through this mechanism. Prostaglan-
din-J2 and cLA are produced endogenously. cLA is

produced by the actions of gut-derived probiotic bacteria
on linoleic acid. The therapeutic effect of probiotics in AD
may be a result of cLA production. Roseburia and Lacto-
bacillus crispatus have been shown to produce cLA in
vitro. Caution must be taken in purchasing cLA, marketed
as a diet aid, because the trans-10, cis-12 isomer that is the
predominant form in this preparation induces a stress
response in fat cells.117

PPARs in wound healing and nonmelanoma
skin cancer

PPAR-β activation promotes cell survival by decreasing
nuclear and mitochondrial apoptotic pathways.118 This is an
important feature for skin wound healing, In fact, PPAR-β
is expressed in the keratinocytes of wound edges
throughout the duration of the healing process.119 PPAR-
β expression has also been shown to be up-regulated in
SCC.120 Conversely, PPAR-α and PPAR-γ are antiproli-
ferative and are showing importance in the pathogenesis
and treatment of skin cancers. Topical application of
PPAR-α reduced human skin inflammation induced from
ultraviolet light.121

PPARs in malignant melanoma

PPAR-γ agonists have been shown to inhibit human
melanoma proliferation,122 whereas PPAR-α activation
inhibits melanoma cell migration.123,124 In parallel, fewer
people were diagnosed with melanoma while taking
gemfibrozil compared with controls. Some investigators
believe that the malignant nature of melanoma cells
depends on stimulation of the Wnt/β-catenin pathway
and microphthalmia transcription factor pathways.125

Interestingly, ciglitazone, a PPAR-γ ligand, has been
shown to cause reductions in both these pathways.125

Therefore, the thiazolidinediones and other PPAR-γ
agonists like DHA and EPA pose potential future therapies
for melanoma.

TLRs and ω-3 fatty acids

The TLRs are a fairly recently identified group of
receptors that are present on many cells, including
keratinocytes, monocytes, Langerhans cells, dermal dendrit-
ic cells, and intestinal epithelial cells. The TLRs are involved
in the first-line recognition of pathogens. They are pattern-
recognition receptors that recognize certain pathogen-
associated molecular patterns expressed by microbes. TLRs
communicate signals of tolerance from recognized commen-
sals or, when danger is sensed, elicit inflammatory responses
leading to dendritic cell maturation and activation of
adaptive responses. DHA and EPA have been shown,
through the consumption of fish oil, to reduce the
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proinflammatory signals derived from TLR-2 in human
monocytes.126 In addition, DHA has been shown to inhibit
TLR-4, the receptor for lipopolysaccharide.83

At least 10 TLRs have been found in humans127 and can
be viewed in 3 categories: lipid/lipopeptide-sensing TLRs (1,
2, 4, and 6), protein-sensing TLRs (5), and nucleic acid-
sensing TLRs (3, 7, 8, and 9).83 The intracellular
transmembrane component is homologous to the IL-1
receptor128 and, in fact, activates a similar intracellular
cascade leading to the activation of NF-κB. This leads to
production of proinflammatory cytokines and antimicrobial
peptides, and up-regulation of chemokines, adhesion mole-
cules, and co-stimulatory molecules.

Briefly, TLR-1, -2, and -6 can homodimerize or
heterodimerize with each other; they are lipid/lipoprotein
receptors, bind peptidoglycan, and recognize microbes such
as S epidermitis, S aureus, Mycoplasma, and Mycobacteria.
The role of TLR-2 may be to aid in establishing tolerance to
nonpathogenic bacteria, because signaling through TLR-2
alone leads to the induction of IL-10 and reduced cell-
mediated immunity. Heterodimerization with TLR-1 leads to
increased cell-mediated immunity.

EPA and DHA, TLR-2 and TLR-4, and skin disease

EPA and DHA may help reduce inflammatory responses
in AD and psoriasis by modulation of TLR-2 and TLR-4.129

AD and psoriasis
Patients with AD are chronically colonized by S aureus, a

known stimulator of TLR-2. Recent studies have identified a
group of severe atopics with polymorphisms in the TLR-2
gene.130 Increased expression of TLR-2 has been found in
lesional keratinocytes in patients with psoriasis.83 In
addition, antikeratin 16 antibodies that are increased in
patients with psoriasis131 were found to increase the
messenger RNA expression of TLR-2 and TLR-4.132

Acne vulgaris
In acne, sebocytes are known to express TLR-2 and TLR-

4 constitutively.133 Propionibacterium acnes can activate
TLR-2 onmacrophages, leading to IL-12 and IL-8 production
and neutrophil recruitment. Inflammation can be perpetuated
by keratinocytes by P acnes induction of TLR-4 (not
typically expressed on keratinocytes) and TLR-2 activation.
EPA and DHA may therefore be helpful in modulating this
inflammation. While DHA and EPA may be functioning to
control inflammation, other antimicrobial fatty acids at the
skin surface are trying to eliminate P acnes. Lauric acid is an
antimicrobial fatty acid found in coconut oil and breast milk.
It is also produced by sebaceous glands and is a stimulator of
TLR-2. This fat, when applied topically, reduced the numbers
of P acnes colonies at the epidermal surface and was
nontoxic to sebocytes.134 Oral supplementation with DHA
and EPA could then serve as a perfect adjunct to this potential
antiacne drug by modulating inflammation and irritation.

Conclusions

The mechanisms of the nutritional deficiency dermatosis
originally recognized by Burr and Burr1,2 are becoming more
fully understood as the diverse and elaborate roles of the
PUFAs are elucidated. Furthermore, PUFAs are proving
to be essential to healthy skin and aid in the healing of
diseased skin.

A fatty acid profile can help identify patients with
suboptimal fatty acid concentrations. Absolute fatty acid
concentrations, ω-6:ω-3 ratios, and mead acid levels—a
marker of essential fatty acid deficiency—can be evaluated
from this parameter.3 Western diets and disease make us
more dependent on obtaining GLA, arachidonic acid, EPA,
and DHA from the diet.7 Consumption of LA in the form of
sunflower seeds, poppy seeds, and wheat germ, as well as
ceramide supplements, can provide the epidermis with
precursors for the synthesis of ceramides that are important
in the formation of the extracellular lipid matrix. The
epidermis depends on lipids for maturation and repair,
because perturbations in the permeability barrier lead to the
up-regulation of genes important in fatty acid uptake,46-54 the
mechanisms of which are more selective for LA.13-16 In
addition, physiologic lipids such as ceramides and free fatty
acids applied topically do not impede maturation of the
epidermis as occlusive petrolatum does.56

Maintaining an acidic environment by limiting bleach
baths and applying topical lactate and ascorbic acid (vitamin
C) appears to promote natural ceramide synthesis.32,31

Niacinamide, α-lipoic acid and N-acetylcysteine are other
nutrients that stimulate ceramide generation.27-30 Dietary
evening primrose oil, a form of GLA (ω-6), appears to be
effective in the subset of AD patients with an allergic
phenotype and high IgE levels.43 Finally, reducing the
dietary intake of trans-fatty acids and saturated fats during
pregnancy is associated with, respectively, lower risk of AD
and a less severe phenotype.40,65

Increasing the intake of green leafy vegetables, nuts,
seeds, and cold-water fish over time can improve the
concentration of ω-3 fatty acids in cellular membranes.
The hydroxylated variants of DHA, EPA, and DGLA—17-
hydroxyeicosahexanoic acid, 15-hydroxyeicosahexanoic
acid, and 15-hydroxyeicosatrienoic acid—respectively, can
temper inflammatory mediators such as leukotriene B4 and
improve psoriatic lesions.63,64 Studies have shown that high
doses of fish oil rich in EPA and DHA improved psoriasis in
hospitalized patients when administered intravenously73 and
reduced acitretin-associated hyperlipidemia and cyclosporin-
induced nephrotoxicity.75

DHA and EPA are proapoptotic andmay soon be used as an
adjuvant treatment for many malignancies due to their ability
to activate caspase cascades, induce apoptosis, and enhance the
effects of chemotherapeutic medicines.76,77 PUFAs may also
be a useful addition for the prevention of skin carcinogenesis
and alleviate photosensitive eruptions by increasing the
sunburn threshold and reducing damage to DNA.78
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DHA and EPA are not found in great supply in the
epidermis, which may reflect insufficient dietary intake or
increased cellular utilization, because these fatty acids are
important anti-inflammatory and antiproliferative cellular
messengers activating PPARs and TLRs. PPAR-γ ligands
are anti-inflammatory. High-dose essential fat therapy may
be a safer alternative to pioglitazone, a PPAR-γ ligand, in the
treatment of psoriasis. Coadministration of PUFAs with
acitretin in psoriasis patients may reduce adverse effects and
augment the clinical outcome.109

Topical PPAR-α is showing promise in AD with its
ability to facilitate healing of the permeability barrier.114

PPARs are also antiproliferative and antimetastatic and may
control specific pathways involved in melanoma.124-126

Finally, EPA and DHA may help control inflammation in
acne and psoriasis through TLR-2 and TLR-4 binding.131

Linoleic acid, γ-linolenic acid, eicosapentaenoic acid, and
docosahexanoic acid are vital to optimum wellness and
healthy skin. Poor maternal nutrition, infancy, consuming a
Western diet, age, and diabetic states are conditions where
increased dietary intake is required and nutritional supple-
mentation is essential to restore the balance of ω-6:ω-3 fatty
acids. As we have discussed, these fatty acids and their
synthetic derivatives serve important and diverse roles in the
structural maintenance and immunologic balance of the
epidermis and may aid in the healing of many dermatoses by
the following mechanisms:

• maintenance of the stratum corneum permeability
barrier

• maturation and differentiation of the stratum corneum
• formation and secretion of lamellar bodies
• inhibition of proinflammatory eicosanoids
• elevation of the sunburn threshold
• inhibition of proinflammatory cytokines, including
TNF-α, IFN-γ, and IL-12

• inhibition of lipoxygenase
• promotion of wound healing
• promotion of apoptosis in malignant cells including
melanoma

• modulation of PPARs
• inhibition of proinflammatory signals mediated through
TLRs
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